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Abstract
Hyperasymptotic summation of steepest-descent asymptotic expansions of
integrals is extended to functions that satisfy a dispersion relation. We apply
the method to energy eigenvalues of the anharmonic oscillator, for which there
is no known integral representation, but for which there is a dispersion relation.
Hyperasymptotic summation exploits the rich analytic structure underlying the
asymptotics and is a practical alternative to Borel summation of the Rayleigh–
Schrödinger perturbation series.

PACS numbers: 03.65.Sq, 02.30.Gp, 02.60.−x

1. Introduction

In recent years there has been renewed mathematical and physical interest in the high-order
terms of asymptotic expansions of physical quantities [1–5]. Quite apart from numerical
improvement, such studies lead to a better understanding of analyticity and can uncover
previously unseen physical connections [3]. At the heart has been the phenomenon called
resurgence, in which exponentially small terms, sometimes neglected in the traditional
Poincaré treatment, ‘rise again’ in summing the high-order terms.

Traditionally, summation of asymptotic power series involves truncation before the
smallest term. The residual exponentially small error is connected to the large-order behaviour
of the series coefficients, which in turn is determined by the distance to the closest singularity of
the Borel transform on the same Riemann sheet [6]. There are often additional (exponentially
small) terms neglected by the Poincaré definition of asymptotic power series, but whose
contributions may be numerically comparable and analytically essential to the reconstruction
of the function that gave rise to the series. Hyperasymptotics refers to a sequence of
approximations that transcend the truncation error of the main series while using the associated
exponentially small series [1].
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The possibility of exponential accuracy was noted by Stieltjes [7] and explored in particular
cases by several authors [8, 9]. The idea of systematic exponential approximations, i.e.
resurgence, was first conceived by Dingle [10], and later rediscovered by others, e.g. Raković
and Solov’ev [11]. Its development was continued by field theorists [12] in its simplest form
and in many guises, culminating in a major mathematical treatment by Écalle [13, 14]. The
results are twofold: first, the divergence is seen as a consequence of associated exponentially
small terms and (possibly complex) singularities and second, the procedure ‘decodes’ the
late terms allowing a reconstruction of the function in calculable form. The former leads
to complete formal expansions that include all subseries with exponentially small prefactors,
regardless of size; the latter leads to a numerical procedure called hyperasymptotics [1, 2,
15–18].

The hyperasymptotic method, with sufficient information, theoretically recovers the exact
function from its asymptotic expansion, and the exponentially small ambiguities characteristic
of the Poincaré approach are removed. In practice, this removal stems from a careful tracking
of the Stokes phenomena, whereby exponentially small terms pass in and out of the formally
exact asymptotic expansion as parameters are varied.

Hyperasymptotics has been successfully applied to Laplace-type integrals [2, 15], to the
solutions of certain classes and systems of ordinary differential equations [1, 16–18], and to the
number-theoretic generalized Euler–Jacobi series [19]. Berry and Howls [3] and Howls and
Trasler [20] have also suggested that resurgence can be applied to trace formulae associated
with quantum eigenvalues, allowing the high-order terms in the quantum Weyl series to be
estimated in terms of the classical periodic orbits of associated systems.

In this paper we apply hyperasymptotics to a single eigenvalue problem, the quartic one-
dimensional harmonic oscillator. For each energy level there is an asymptotic power series—
the usual Rayleigh–Schrödinger (RS) perturbation series—and a sequence of exponentially
smaller subseries that can be derived formally by semiclassical methods. Recently, Kowalenko
and Rawlinson [21] have applied the Mellin–Barnes regularization [19] to the RS power
series, obtaining the first and second terms of what we will call the first-level hyperasymptotic
expansion. We have developed, however, a systematic method: each successive hyper-iteration
of the method consists in replacing the remainder of a truncated asymptotic expansion by a
sum of terms composed of the lower-order terms of an associated asymptotic expansion
multiplied by universal integrals. The connection between one series and the next has the
form of a dispersion relation that arises by contour deformation of a Cauchy integral in the
coupling constant plane. (We expect that these dispersion relations involve the Bender–
Wu branch cuts [22–24], but we do not make the link in this paper.) In the absence
of rigorous mathematical proof, we rely on heuristic arguments to justify the dispersion
relations.

Although our primary interest is in the anharmonic oscillator problem, we are in fact
dealing with the general problem of the derivation of hyperasymptotic approximations for
functions that may not have explicit integral representations but that do satisfy a dispersion
relation. In this sense, our work is analogous to that of Boyd [25], who obtained
hyperasymptotic expansions for Bessel functions that can be expressed as a Stieltjes transform.
We expect hyperasymptotic techniques to be widely applicable wherever dispersion relations
exist [15, 25–27].

We remark that this is the first time that systematic hyperasymptotic expansions have
been developed and applied numerically to an individual eigenvalue problem. A brief account
was given at the 1998 Kyoto University RIMS Symposium, ‘Algebraic Analysis of Singular
Perturbations’ [28]. We also note that the anharmonic oscillator introduces previously unseen
logarithmic terms into the hyperasymptotics.
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The layout of the paper is as follows: in section 2 we show how the hyperasymptotics of
the Airy function, previously discussed via integral representation, follow from a dispersion
relation. In section 3 we apply the dispersion relation approach to the anharmonic oscillator.
The numerical results are given in section 4, and an overall discussion of our results appears
in section 5. The evaluation of certain integrals is relegated to the appendix.

2. The Airy function as a prototype

Key to the invention of hyperasymptotics was an explicit integral representation for the
remainder (the truncation error of the asymptotic power series). Perhaps for this reason,
hyperasymptotics have been applied mainly to saddle-point expansions of functions defined
by integral representations [2, 15] and to solutions of certain ordinary differential equations
[1, 16–18] where integral representations of the remainders of asymptotic expansions of
solutions could be derived rigorously.

In this section we show how hyperasymptotics develop from dispersion relations. Rather
than jump directly to the anharmonic oscillator, we first revisit the Airy function, previously
studied via integral representation. This permits us to focus on general technique without
distraction from specifics peculiar to the oscillator.

The Airy function Ai(z) is the paradigm example because its asymptotics are relatively
straightforward and uncomplicated. We rederive the hyperasymptotic expansion for Ai(z)
given by Berry and Howls [1], but without using the explicit integral representation for Ai(z).
In fact, only two pieces of information about the Airy function will be used: its basic asymptotic
expansion (1), and its dispersion relation (11).

2.1. Asymptotic power series for the Airy function

The fundamental asymptotic expansion for Ai(z) is given by equation (10.4.59) of [29] (for a
detailed discussion of the domains of validity, see [30]):

Ai(z) ∼ 1

2
π−1/2z−1/4 e− 2

3 z
3/2

∞∑
k=0

(−1)kck

(
4

3
z3/2

)−k (
|arg z| < 2

3
π

)
(1)

where

ck = 1

k!

(
1

6

)
k

(
5

6

)
k

(2)

and (a)k denotes the Pochhammer symbol: (a)0 = 1, (a)k = a(a + 1) · · · (a + k − 1). For
convenience, we use a definition of ck that is 2k times the ck of Abramowitz and Stegun [29],
with a corresponding factor of 2 difference in the expansion variable

ξ = 4
3z

3/2. (3)

All other related asymptotic expansions for Ai(z) and its companion function Bi(z)—in
particular, the expansion for Ai(z) in the complementary sector |arg(−z)| < π/3, and those
for Bi(z) in the sectors 0 < ±arg z < 2π/3 and |arg(−z)| < π/3—are combinations of
equation (1) and the continuation formulae

2 e±iπ/6Ai
(
e±2π i/3z

) = Bi(z) ± i Ai(z). (4)
It is convenient to focus attention on a dressed Airy functionA(ξ)whose asymptotic expansion
is just the power series in equation (1),

A(ξ) ≡ 2π1/2
(

3
4ξ
)1/6

eξ/2Ai(z) (5)

A(ξ) ∼
∞∑
k=0

(−1)kckξ−k (|arg ξ | < π). (6)
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Figure 1. Contour deformation that takes the Cauchy formula (7) to the integral along the branch
cut (8).

2.2. Dispersion relation for A(ξ)

We derive first the once-subtracted dispersion relation for A(ξ), which is essentially a
manipulation of the Cauchy integral formula

A(ξ) − 1

ξ
= 1

2π i

∮
dt
A(t) − 1

t (t − ξ)
. (7)

Deform the integration contour as indicated in figure 1. Because of the subtraction, the
contribution from the large circle vanishes as the radius increases, and the final deformed
integration path wraps around the negative real axis, which is a branch cut for A(t),

A(ξ) − 1

ξ
= 1

2π i

∫ (∞ e+iπ ,0−,∞ e−iπ )

dt
A(t) − 1

t (t − ξ)
. (8)

Equation (8) reduces to the sum of two terms (see equation (10) below): a contribution from
the origin and an integration along the negative real axis of the discontinuity in the integrand.
The discontinuity ofA(t) across the negative t axis is provided by the continuation formulae (4)

A(eiπτ ) − A(e−iπτ ) = i e−τA(τ). (9)

In this way equation (8) leads to

A(ξ) − 1

ξ
= −1

ξ
+

1

2π

∫ ∞

0
dτ e−τ A(τ)

τ (ξ + τ )
(10)

or, finally, to the dispersion relation

A(ξ) = ξ

2π

∫ ∞

0
dτ

e−τ

τ (ξ + τ )
A(τ). (11)

Note that

A(ξ) = π−1/2ξ1/2 eξ/2K1/3(ξ/2). (12)

Thus equation (11) expresses A(ξ) as the Stieltjes transform of a modified Bessel function,
which was the starting point of Boyd’s analysis [25].

2.3. Asymptotic expansion and the dispersion relation for A(ξ)

There is a close connection between the dispersion relation and the asymptotic expansion.
The geometric sum

ξ

τ (ξ + τ )
=

N−1∑
k=0

(−1)k
τ k−1

ξk
+
(−1)N

ξN−1

τN−1

(ξ + τ )
(13)

leads to what at first appears to be an alternate form of the dispersion relation (11)

A(ξ) =
N−1∑
k=0

(−1)kξ−k

∫ ∞

0

dτ

2π
τk−1 e−τA(τ) +

(−1)Nξ1−N

2π

∫ ∞

0
dτ τN−1 e−τ

ξ + τ
A(τ). (14)



Dispersive hyperasymptotics and the anharmonic oscillator 4021

But since A(ξ) has the unique asymptotic power series (6), the integrals under the sum in
equation (14) must evaluate to the ck of equation (6). That is

A(ξ) =
N−1∑
k=0

ck(−1)kξ−k + R(N, ξ) (15)

R(N, ξ) = (−1)Nξ1−N

2π

∫ ∞

0
dτ τN−1 e−τ

ξ + τ
A(τ). (16)

Equation (15) is exact, not asymptotic. It is in fact a family of subtracted dispersion
equations—N can be any positive integer or zero. It becomes asymptotic only if the remainder
term R(N, ξ) is dropped. As we shall see in the next subsection, equation (15) is an engine
that generates the hyperasymptotic expansions for A(ξ).

2.4. Hyperasymptotic expansions for A(ξ)

The hyperasymptotic expansions for A(ξ) result from substituting the dispersion relation (15)
recursively into itself. The split between partial sum and remainder (i.e. the value of N) can
be chosen differently at each step.

2.4.1. First-level hyperasymptotic expansion. We take N = N0 in the ‘target’ equation (15)
and N = N1 in the ‘substituend’ equation (15) to obtain

A(ξ) =
N0−1∑
k0=0

ck0(−1)k0ξ−k0 +
(−1)N0

2πξN0

N1−1∑
k1=0

ck1(−1)k1T (N0 − k1, ξ) + R(N0, N1, ξ) (17)

where the first-level T functions, which depend on N0 −k1 and ξ , but are independent of A(ξ),
can be expressed in terms of the gamma and incomplete gamma functions

T (N0 − k1, ξ) ≡ ξ

∫ ∞

0
dτ1

τ
N0−k1−1
1 e−τ1

ξ + τ1
(18)

= ξN0−k1 eξ�(N0 − k1)�(1 − N0 + k1, ξ) (19)

and where the first-level remainder is a double integral with A(τ2) in the integrand

R(N0, N1, ξ) = (−1)N0+N1

(2π)2ξN0−1

∫ ∞

0
dτ1 τ

N0−N1
1

e−τ1

ξ + τ1

∫ ∞

0
dτ2 τ

N1−1
2

e−τ2

τ1 + τ2
A(τ2). (20)

2.4.2. Second-level hyperasymptotic expansion. Substitution of the dispersion relation (15)
into the remainder term of equation (17) gives the second-level hyperasymptotic expansion

A(ξ) =
N0−1∑
k0=0

ck0(−1)k0ξ−k0 +
(−1)N0

2πξN0

N1−1∑
k1=0

ck1(−1)k1T (N0 − k1, ξ) +
(−1)N0+N1

(2π)2ξN0

×
N2−1∑
k2=0

ck2(−1)k2T (N0 − N1, N1 − k2, ξ) + R(N0, N1, N2, ξ) (21)

where the second-level T functions (again independent of A(ξ)) are defined by

T (N0 − N1, N1 − k2, ξ) ≡ ξ

∫ ∞

0
dτ1 τ

N0−N1
1

e−τ1

ξ + τ1

∫ ∞

0
dτ2 τ

N1−k2−1
2

e−τ2

τ1 + τ2
(22)
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and where the second-level remainder is the triple-integral

R(N0, N1, N2, ξ) = (−1)N0+N1+N2

(2π)3ξN0−1

∫ ∞

0
dτ1 τ

N0−N1
1

e−τ1

ξ + τ1

∫ ∞

0
dτ2 τ

N1−N2
2

e−τ2

τ1 + τ2

×
∫ ∞

0
dτ3 τ

N2−1
3

e−τ3

τ2 + τ3
A(τ3). (23)

2.4.3. Higher-level hyperasymptotic expansions. The next higher-level hyperasymptotic
expansion follows by substituting equation (15) into the remainder term of equation (21),
and so forth. In this manner, dispersion relations generate hyperasymptotic expansions to
successively higher orders.

2.4.4. Comments. The only explicit information about A(ξ) in the hyperasymptotic
expansions (17) and (21) comes in through the series coefficients ck: the T factors are of
a universal form.

The numerical utility of the first-level hyperasymptotic expansion (17) is that the
remainder term R(N0, N1, ξ) can often be made orders of magnitude smaller than the
remainder term R(N0, ξ) for the standard asymptotic expansion (15) by appropriate choice of
N0 and N1. The lower-order ck1 in effect are used to sum the omitted higher-order asymptotic
terms ck0 with k0 � N0.

Similarly, the numerical utility of the second-level hyperasymptotic expansion (21) is that
the remainder term R(N0, N1, N2, ξ) can often be made orders of magnitude smaller than the
remainder term R(N0, N1, ξ) for the hyperasymptotic expansion (17) by appropriate choice
of N0, N1 and N2. The lower-order ck2 in effect are used to sum the omitted late first-level
hyperasymptotic terms ck1 with k1 � N1.

Therefore, the advantage of the hyperasymptotic method is that successively higher
computational accuracy is extracted from the divergent power-series coefficients ck. The
disadvantage is that the T ’s of the successively higher-level series become increasingly more
cumbersome to calculate (for methods, see [1, 18, 26, 27]).

Finally we mention that there are other new techniques for summing divergent series, e.g.
Weniger [31–34].

2.5. Beyond Airy functions

The Airy function is particularly simple in the sense that it appears in its own dispersion
relation. More typically the function on the right in a dispersion relation differs from that on
the left. Equation (15) might be replaced by a sequence of equations such as

Ai(ξ) =
N−1∑
k=0

ci,k(−1)kξ−k +
(−1)Nξ1−N

2π

∫ ∞

0
dτ fi+1(τ )τ

N−1 e−τ

ξ + τ
Ai+1(τ ) (24)

or perhaps

Ai(ξ) =
N−1∑
k=0

ci,kξ
−k +

ξ1−N

2π

∫ ∞

0
dτ fi+1(τ )τ

N−1 e−τ

ξ − τ
Ai+1(τ ) (25)

with a pole in the integrand on the positive axis. Incidentally, a pole is equivalent to a Stokes
phenomenon [1]. It may be thought of as arising from the Borel summation of terms with
equal phase, and in such a case, information about the branch of Ai(ξ) is required to take
explicit account of the pole by suitable deformation of the integration contour [1]. A linear
combination of equations such as (24) and (25) is also possible.
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In equations (24) and (25) the Ai(ξ) denote functions having asymptotic power series that
start with constant terms. The modifying function fi+1(τ ) could be a constant times a power

fi+1(τ ) = ai+1τ
σi+1 (26)

or a constant times a power times a logarithm

fi+1(τ ) = ai+1τ
σi+1 ln τ (27)

or something more complicated. Previous applications of hyperasymptotics have not explicitly
encountered the logarithmic scenario (27).

The great advantage of the Airy function is that it permits development of the
hyperasymptotic aspects without having to discuss the asymptotics of the functions appearing
on the right-hand side of the dispersion formula, since for the Airy function they are the
same. This is not the case for the anharmonic oscillator eigenvalues, where all the scenarios
represented by equations (24)–(27) occur.

3. The anharmonic oscillator

The quartic anharmonic oscillator is characterized by the Schrödinger equation[
−1

2

d2

dx2
+

1

2
x2 + gx4 − En(g)

]
ψ(x) = 0. (28)

The nth perturbed energy eigenvalue En(g) has a factorially divergent but Borel-summable
[35] asymptotic power series given by RS perturbation theory

En(g) ∼ ERS
n (g) ≡

∞∑
j=0

E(j)
n gj (|argg| < π). (29)

As a function of the anharmonicity constant g, the energy has a cut on the negative real g axis,
and the following once-subtracted dispersion relation [23, 36] holds

En(g) = E(0)
n +

(−g)

2π i

∫ ∞

0

�En(z)

z(z + g)
dz (30)

where E(0)
n = n + 1/2, and where

�En(z) ≡ En(e−iπz) − En(e+iπz) (31)

denotes the discontinuity of En(g) across the negative real g axis when g = −z. The
combination of factorial divergence and dispersion relation suggests the possibility of
hyperasymptotics.

The dispersion relation (30) leads to a formal equation for partial summation of the RS
series plus remainder, the analogue of equations (15) and (24)

En(g) =
N0−1∑
j=0

E(j)
n gj + Rn(N0, g) (32)

Rn(N0, g) = (−1)N0gN0

2π i

∫ ∞

0

z−N0

z + g
�En(z) dz. (33)
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3.1. Energy discontinuity across the negative g axis to first-exponentially-small order;
first-level hyperasymptotic expansion

The discontinuity of En(g) across the negative g axis and its relation to the asymptotics of
the RS series were discussed previously in [37] where the following first-exponentially-small-
order asymptotic expansion was derived,

�En(z) ∼ �E{1}
n = −2π iCn(3z)

−n− 1
2 e− 1

3z bseries
n (z) (34)

where

Cn = 12n+ 1
2

π
√

2π�(n + 1)
(35)

bseries
n (z) ≡

∞∑
k=0

b(k)n (3z)k. (36)

The coefficients b(k)n turn out to be polynomials of degree 2k in the quantum number n, with
b(0)n = 1. Numerical values through 50th order were previously tabulated for the first three
states (n = 0, 1, 2) in [37]. Note that 3g here corresponds to ξ−1 in the Airy function
discussion, and similarly 3z corresponds to τ−1.

The expansion (34)–(36) permits us to calculate the first-level hyperasymptotic
contribution to the remainder after RS summation through order N0 − 1

Rn(N0, g) = −(−3g)N0Cn

N1−1∑
k=0

b(k)n T

(
N0 + n +

1

2
− k,

1

3g

)
+ Rn(N0, N1, g) (37)

where T is the same function (18) that appeared in the Airy function hyperasymptotics, and
which follows from the substitution 3z = 1/τ ,

T

(
N0 + n +

1

2
− k,

1

3g

)
≡
∫ ∞

0

(3z)−N0−n− 1
2 +k e− 1

3z

z + g
dz. (38)

3.2. Heuristic derivation of a dispersion relation for bn(z)

In the companion paper [38] we have extended the method of [37] to calculate the energy
discontinuity to second-exponentially-small order

�En(z) ∼ �E{1}
n + �E{2}

n . (39)

Does second-level hyperasymptotics follow from �E
{2}
n in the same way that first-level

hyperasymptotics follows from �E
{1}
n ? The answer is yes (it follows) and no (not exactly in

the same way). First, there is a direct, second-exponentially-small contribution to �En(z) that
makes a second-level hyperasymptotic contribution via equations (32) and (33). Second, one
must sum the series bseries

n (z) that appears as a factor in �E
{1}
n ,

bn(z) = Borel sum of
∞∑
k=0

b(k)n (3z)k (40)

which would require a dispersion relation that in turn should involve the discontinuity of
bn(z), namely, the discontinuity of the discontinuity of En(g). How to extract the relevant
information from �E

{2}
n , which is a part of the (noniterated) discontinuity of En(g) in second-

exponential-order, is not immediately obvious.
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We adopt an exploratory attitude and proceed intuitively, but nonrigorously. First note
that En(g) satisfies the Schwarz reflection principle, whose consequence is that �En(z) is
purely imaginary for z real and positive. Further, the analyticity of En(g) implies that �En(z)

is analytic and a fortiori continuous for positive z.
The first-exponentially-small expansion �E

{1}
n is (−i) times a real prefactor times the

formally real power series bseries
n (z), when z is positive, and at first glance would seem to

satisfy the Schwarz principle. Closer inspection reveals a problem. Since the late coefficients
b(k)n are all negative and grow slightly faster than factorially with k [37, 38], we infer that bn(z)
has a cut on the positive z axis, and that the discontinuity across the cut is purely imaginary
and exponentially small, which after multiplication by the appropriate exponentially small
prefactor becomes a second-exponentially-small-order real discontinuity in the Borel sum of
�E

{1}
n (z), seemingly in conflict with the Schwarz principle and the continuity of �En(z).
The conflict is resolved by �E

{2}
n , which has the form [38]

�E{2}
n (z) = �E{2,r}

n (z) + i�E{2,i}
n (z) (41)

where for real z both �E
{2,r}
n (z) and �E

{2,i}
n (z) are formally real expansions; however,

�E
{2,r}
n (z) changes sign discontinuously on z > 0

�E{2,r}
n (z − i0) = −�E{2,r}

n (z + i0) (z > 0). (42)

The explicit �E
{2,r}
n (z) series must cancel in second exponential order the implicit

discontinuity of the Borel sum of the �E
{1}
n series, because �En(z) must be imaginary

and continuous on z > 0. Symbolically, for z > 0

�E{1}
n (z ± iε) + �E{2,r}

n (z ± iε) + i�E{2,i}
n (z ± iε)

Borel sum−→ −2π iCn(3z)−n− 1
2 e− 1

3z Re[bn(z)] + i�E{2,i}
n (z) + O(e− 1

3z )3. (43)

The cancellation itself is

2πCn(3z)−n− 1
2 e− 1

3z Im[bn(z ± iε)] + �E{2,r}
n (z ± iε) = 0 + O(e− 1

3z )3. (44)

Note that it is necessary to specify whether the real axis is approached from above or below,
because bn(z) and �E

{2,r}
n (z) are discontinuous on z > 0; hence the ±iε.

We elaborate on this last equation to obtain an asymptotic expansion for the discontinuity
�bn(z) in bn(z). First take z real and positive, and define

�bn(z) ≡ bn(z − i0) − bn(z + i0) (z > 0). (45)

For z complex, define�bn(z) by analytic continuation from z > 0. To avoid the sign confusion
that could arise when �E

{2,r}
n (z ± i0) appears in a dispersion relation, in [38] we introduced

the symbol �E
{2,r,−}
n (z) to denote an expansion that is formally continuous across the real

axis, that coincides with �E
{2,r}
n (z) when Im z < 0, but that is −�E

{2,r}
n (z) when Im z > 0.

The resulting asymptotic expansion for �bn(z) is then

�bn(z) ∼ −2i

2πCn

(3z)n+ 1
2 e

1
3z �E{2,r,−}

n (z). (46)

That the formally real series �E
{2,r,−}
n (z) yields a formula for the discontinuity of the Borel

sum of the �E
{1}
n (z), and thereby provides a dispersion relation, was conjectured in essence

by Damburg and Propin [39] in the context of the separation constants for hydrogen in an
external electric field, for which the separated equations are equivalent to a radially symmetric
two-dimensional anharmonic oscillator.
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A formal statement of our conjecture is that

bn(z) = −1

2π i

∫ ∞

0
dζ

�bn(ζ )

ζ − z
(47)

=
N1−1∑
k=0

b(k)n (3z)k − zN1

2π i

∫ ∞

0
dζ

ζ−N1�bn(ζ )

ζ − z
(48)

∼
N1−1∑
k=0

b(k)n (3z)k +
2zN1

(2π)2Cn

∫ ∞

0
dζ

ζ−N1(3ζ )n+ 1
2 e

1
3ζ �E

{2,r,−}
n (ζ )

ζ − z
. (49)

The explicit expansion for �E
{2,r,−}
n (z) derived in [38] leads to

�bn(z) ∼ 2π iCn(3z)−n− 1
2 e− 1

3z

{ ∞∑
l=1

d(l)
n (3z)l − 2

[
ln
( z

4

)
+ ψ(n + 1)

] ∞∑
l=0

c(l)n (3z)l
}

(50)

where the expansion coefficients c(l)n and d(l)
n are defined in [38]. The formula for �E

{2,i}
n (z),

which involves the same expansion coefficients c(l)n , is [38]

�E{2,i}
n (z) = π

2

[
2πCn(3z)−n− 1

2 e− 1
3z
]2

∞∑
l=0

c(l)n (3z)l. (51)

3.3. Second-level hyperasymptotic expansion

Armed with the dispersion relation for bn(z), we follow again the example of the Airy function
to obtain second-level hyperasymptotics, but the structure is more complicated. There are two
separate pieces: the first is from i�E

{2,i}
n (z); the second is from �E

{2,r}
n (z) and sums the bn(z)

series in first exponential order

Rn(N0, N1, g) = (−1)N0gN0

2π

∫ ∞

0

z−N0

z + g

[
�E{2,i}

n (z) + · · ·] dz + Cn(−g)N0

×
∫ ∞

0

z−N0

z + g
(3z)−n− 1

2 e− 1
3z

[
zN1

1

2π i

∫ ∞

0

ζ−N1�bn(ζ )

ζ − z
dζ

]
dz. (52)

The contribution from the first piece is similar to that of �E
{1}
n in equations (33)–(38)

(−1)N0gN0

2π

∫ ∞

0

z−N0

z + g
�E{2,i}

n (z) dz

= (−3g)N0C2
n

∞∑
l=0

c(l)n π22−N0−2n−1+lT

(
N0 + 2n + 1 − l,

2

3g

)
. (53)

The contribution of the second piece is analogous to equations (24) and (25) combined
sequentially

Cn(−g)N0

∫ ∞

0

z−N0

z + g
(3z)−n− 1

2 e− 1
3z

[
zN1

1

2π i

∫ ∞

0

ζ−N1�bn(ζ )

ζ − z
dζ

]
dz (54)

= C2
n(−g)N0

∫ ∞

0

z−N0

z + g
(3z)−n− 1

2 e− 1
3z

[
zN1

∫ ∞

0
(3ζ )−n− 1

2 e− 1
3ζ
ζ−N1

ζ − z
dζ

]

×
{ ∞∑

l=1

d(l)
n (3ζ )l − 2

[
ln

(
ζ

4

)
+ ψ(n + 1)

] ∞∑
l=0

c(l)n (3ζ )l
}

dz. (55)
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We are thus led to the second-level hyperasymptotic formula for Rn(N0, N1, g), the remainder
in equation (37)

Rn(N0, N1, g) = (−3g)N0C2
n

[
N2−1∑
l=1

d(l)
n T {2}

(
N0 + n +

1

2
− N1, N1 + n +

1

2
− l, 3g

)

+
N2−1∑
l=0

c(l)n U {2}
(
N0 + n +

1

2
− N1, N1 + n +

1

2
− l, 3g

)

+
N2−1∑
l=0

c(l)n π22−N0−2n−1+lT

(
N0 + 2n + 1 − l,

2

3g

)]

+Rn(N0, N1, N2, g) (56)

where

T {2}(p, q, 3g) =
∫ ∞

0
(3z)−p e− 1

3z

z + g

[∫ ∞

0
(3ζ )−q e− 1

3ζ

ζ − z
dζ

]
dz (57)

U {2}(p, q, 3g) = −2
∫ ∞

0
(3z)−p e− 1

3z

z + g

∫ ∞

0
(3ζ )−q e− 1

3z

ζ − z

[
ln

(
ζ

4

)
+ ψ(n + 1)

]
dζ dz. (58)

We remark that T {2}(p, q, 3g) differs from the T (p, q, (3g)−1) of equation (22) in that the
τ1 + τ2 in the denominator in equation (22) is replaced by τ1 − τ2. The difference in sign
indicates that a higher-order Stokes phenomenon is occurring, and that singularities (and the
associated exponentially subdominant contributions) which were not visible at the first stage of
iteration are being uncovered at the next level (cf ‘adjacency’ in [2] and [40]). The evaluation
of T {2} and U {2} is discussed in the appendix, where the singularity in the denominator of the
integrand and the logarithmic factor are treated in detail.

4. Numerical calculations

The picture of how hyperasymptotics works would be incomplete without a numerical example.
In this section we present calculations for the anharmonic oscillator ground and first excited
states.

The formula for the energy through second hyperasymptotic order is a combination of
equations (32), (37) and (56),

En(g) =
N0−1∑
j=0

E(j)
n gj − (−3g)N0Cn

N1−1∑
k=0

b(k)n T

(
N0 + n +

1

2
− k,

1

3g

)

+ (−3g)N0C2
n

[
N2−1∑
l=1

d(l)
n T {2}

(
N0 + n +

1

2
− N1, N1 + n +

1

2
− l, 3g

)

+
N2−1∑
l=0

c(l)n U {2}
(
N0 + n +

1

2
− N1, N1 + n +

1

2
− l, 3g

)

+
N2−1∑
l=0

c(l)n π22−N0−2n−1+lT

(
N0 + 2n + 1 − l,

2

3g

)]

+Rn(N0, N1, N2, g) (59)
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Table 1. Variational energies for the ground and first excited states of the quartic anharmonic
oscillator as a function of the anharmonicity constant g.

g E0(g) E1(g)

0.02 0.514 086 427 318 015 764 724 637 1.568 239 676 804 948 278 327 021
0.03 0.520 561 719 873 001 952 996 419 1.598 456 089 397 955 550 305 114
0.04 0.526 733 964 393 435 586 948 803 1.626 748 400 185 579 933 423 763
0.05 0.532 642 754 771 858 844 428 546 1.653 436 006 576 456 753 564 061

whereCn is the numerical constant given by equation (35), E(j)
n are the RS energy coefficients,

and the b(k)n , c(k)n and d(k)
n coefficients are obtained in [38].

4.1. Optimum choice of N0, N1, . . . , Np

The values of N0, N1, . . . , Np that give best numerical accuracy can be predicted theoretically
by estimating the remainder term Rn(N0, N1, . . . , Np, g) as the size of the first neglected
term; the estimate is then globally minimized with respect to N0, . . . , and Np. This approach
is similar to the more rigorous method of Olde Daalhuis and Olver [16, 18]. The leading-
order growth of the RS coefficients E(j)

n and hyperasymptotic b(k)n , c(k)n and d(k)
n coefficients

[37, 38] is of the same class as for the expansions of Olde Daalhuis and Olver, the commonly
encountered factorial times a power—albeit modified here by a slowly varying logarithm.
Thus one expects the truncation algorithm that minimizes the remainder to be similar. Their
result in our notation is

Nk ≈ (k + 1)

(
1

3g
− n

)
(k = 0, 1, . . . , p). (60)

For a given energy level n and anharmonicity constant g, the estimated truncation constant
Np of the exponentially smallest order is independent of p. The total number of terms after
p stages of hyperasymptotics (which naturally does depend on p) is approximately given by

1

2
(p + 1)(p + 2)

(
1

3g
− n

)
(61)

and thus increases quadratically with the highest hyperasymptotic level. We shall see that
these predicted truncations are supported by explicit calculations.

4.2. Numerical illustrations

For simplicity we consider the ground and first excited states with anharmonicities g = 0.02,
0.03, 0.04 and 0.05. (Due to the expressions derived in the companion paper [38] for the
coefficients b(k)n , c(k)n and d(k)

n , higher excited states are computationally similar in cost to
calculate, but, because of equation (60), the method in its present form is useful in the smaller
range of g given by 1/(3g) > n.) The variational energies are given to 24 digits in table 1. In
subsequent tables we shall compare these variational energies with RS partial sums and first-
and second-level hyperasymptotic partial sums.

4.2.1. RS partial sum. The RS terms ultimately alternate in sign. As N0 increases while g

is small and fixed, the terms generally get smaller in magnitude, reach a minimum, and then
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Table 2. Notation for first omitted terms and partial sums of the RS, first-level hyperasymptotic
and second-level hyperasymptotic series to specify the numerical calculations of section 4.

σ
(N0)
n = E

(N0)
n gN0

σ
(N0,N1)
n = (−3g)N0Cnb

(N1)
n T

(
N0 + n + 1

2 − N1,
1

3g

)
σ
(N0,N1,N2)
n = (−3g)N0C2

n

[
d
(N2)
n T {2} (N0 + n + 1

2 − N1, N1 + n + 1
2 − N2, 3g

)
+ c

(N2)
n U {2} (N0 + n + 1

2 − N1, N1 + n + 1
2 − N2, 3g

)
+ c

(N2)
n π22−N0−2n−1+N2T

(
N0 + 2n + 1 − N2,

2
3g

)]

*
(N0)
n =

N0−1∑
k=0

E(k)
n gk

*
(N0,N1)
n =

N0−1∑
k=0

E(k)
n gk + (−3g)N0Cn

N1−1∑
k=0

b(k)n T

(
N0 + n +

1

2
− k,

1

3g

)

*
(N0,N1 ,N2)
n =

N0−1∑
k=0

E(k)
n gk + (−3g)N0Cn

N1−1∑
k=0

b(k)n T

(
N0 + n +

1

2
− k,

1

3g

)

+ (−3g)N0C2
n

N2−1∑
k=0

[
d(k)n T {2} (N0 + n + 1

2 − N1, N1 + n + 1
2 − k, 3g

)
+ c

(k)
n U {2} (N0 + n + 1

2 − N1, N1 + n + 1
2 − k, 3g

)
+ c

(k)
n π22−N0−2n−1+kT

(
N0 + 2n + 1 − k, 2

3g

)]

Table 3. Smallest RS term and corresponding N0: asymptotic estimate σ
(N̄0)
n,as and actual σ (N0)

n

(see table 2 for notation).

Asymptotic estimate Actual

n g N̄0 σ
(N̄0)
n,as N0 σ

(N0)
n

0 0.02 16.7 6.4 × 10−8 17 5.8 × 10−8

0.03 11.1 1.6 × 10−5 11 1.4 × 10−5

0.04 8.3 2.7 × 10−4 8 −2.1 × 10−4

0.05 6.7 1.4 × 10−3 6 −1.0 × 10−3

1 0.02 15.7 12.7 × 10−6 15 8.4 × 10−6

0.03 10.1 2.2 × 10−3 9 1.0 × 10−3

0.04 7.3 26.5 × 10−3 6 −8.1 × 10−3

0.05 5.7 11.2 × 10−2 4 −2.5 × 10−2

increase factorially fast. Following the notation of table 2, we denote the N0th term of the RS
expansion by σ (N0)

n and its leading asymptotic form by σ (N0)
n,as

σ (N0)
n,as = −Cn(−3g)N0�

(
N0 + n + 1

2

)
. (62)

With Stirling’s approximation, the σ (N0)
n,as has minimum magnitude when N0 is given by

N0 ≈ N̄0 ≡ 1

3g
− n (63)

for which ∣∣σ (N̄0)
n,as

∣∣ ≈
√

2πCn(3g)
−n e− 1

3g . (64)

Table 3 compares the asymptotic estimates of equations (63) and (64) with the numerically
computed smallest terms for each value of g and n. In table 4 we display the partial sums
of the RS series, truncated just before the smallest term—the standard approach to summing
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Table 4. RS energies and accuracy (as number of significant digits) for the ground and first excited
states (see table 2 for notation). The ‘error’ in the last column denotes the difference En(g)−*

(N0)
n

between the variational eigenvalue and the corresponding partial sum. As a visual aid, the digits
in the partial sums not identical with those of the variational energies have been offset by a space.

n g N0 *
(N0)
n −log

∣∣∣σ (N0)
n

∣∣∣ −log |error|

0 0.02 17 0.514086 399 7.2 7.5
0.03 11 0.5205 548 4.9 5.2
0.04 8 0.526 837 3.7 4.0
0.05 6 0.53 315 3.0 3.3

1 0.02 15 1.56823 55 5.1 5.4
0.03 9 1.59 796 3.0 3.3
0.04 6 1.6 308 2.1 2.4
0.05 4 1.6 665 1.6 1.9

an asymptotic series without hyperasymptotics. Also tabulated is a measure of the number of
significant digits, expected from the size of the first omitted term, −log

∣∣σ (N0)
n

∣∣, and found as
the variational energy minus truncated series, −log

∣∣En(g) − *(N0)
n

∣∣.
The error in the truncated series is slightly smaller than the magnitude of the first omitted

term because the RS terms oscillate in sign. The index N0 of the smallest term is smaller than
predicted for the n = 1 case, especially for the larger values of g, for which the predicted N0

is already small, because the leading asymptotic term overestimates the magnitude of E(N0)
1

when N0 is small. (The leading asymptotic term estimates E(N0)

0 better than E
(N0)

1 for the same
value of N0.)

4.2.2. Smallest hyperterm and hyperterm partial sum. The asymptotic form for small g
of the hyperterm contribution σ (N0,N1)

n follows from equation (85) in the companion paper
[38] and either (A.3) or (A.5) below, depending on whether N0 + n − k � (3g)−1 or
N0 + n − k ≈ (3g)−1, the difference being a factor of 1

2 . (While the factor 1
2 reduces the

estimate of the hyperterm, it does not alter the leading term of the estimates for N1 and N2.)
For the smallest hyperterm the latter case applies (cf equations (66) and (68)):

σ (N0,N1)
n,as = (−3g)N0C2

n�
(
N1 + n + 1

2

) [
ln
(
N1 + n + 1

2

)
+ ln 12 − ψ(n + 1)

]
×�

(
N0 + n + 1

2 − N1
)
. (65)

Note that (with N0 > N1) the signs are ultimately given by (−1)N0 , and, except for early N1,
the hyperterms of a given subseries all have the same sign, in contrast with the alternating-sign
RS terms.

First consider the parameter N0 in equation (65) to be fixed. By using Stirling’s
approximation we find that for 1 � N1 � N0, the hyperterms attain minimum modulus at

N1 ≈ N0

2
− 1

2
[
ln
(

1
2N0 + n + 1

2

)
+ ln 12 − ψ(n + 1)

] . (66)

To find the best value of N0, we substitute equation (66) for N1 into equation (65), use again
Stirling’s approximation and get

N0

2
+ n +

1

2
≈ 1

3g
+

1

2
− 1

2
[

ln
(

1
3g + 1

2

)
+ ln 12 − ψ(n + 1)

] . (67)
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Table 5. Smallest hyperterm and corresponding values of N0 and N1: asymptotic estimates
(equations (68)), and actual; see table 2 for notation.

Asymptotic estimate Actual

n g N̄0 N̄1

∣∣∣σ (N̄0,N̄1)
n,as

∣∣∣ N0 N1 σ
(N0,N1)
n

0 0.02 33.2 16.5 2.4 × 10−14 33 16 −2.0 × 10−14

0.03 22.0 10.9 1.5 × 10−9 22 10 1.1 × 10−9

0.04 16.5 8.1 3.7 × 10−7 16 7 2.2 × 10−7

0.05 13.1 6.5 9.9 × 10−6 13 6 −5.0 × 10−6

1 0.02 31.1 15.5 8.0 × 10−10 30 14 3.6 × 10−10

0.03 20.0 9.9 21.8 × 10−6 19 8 −4.8 × 10−6

0.04 14.4 7.1 298.0 × 10−5 12 4 31.0 × 10−5

0.05 11.1 5.4 508.0 × 10−4 9 3 −28.0 × 10−4

Table 6. Hyperenergies and accuracy (as number of significant digits) for the ground and first
excited states (see table 2 for notation). The ‘error’ in the last column denotes the difference
En(g) − *

(N0,N1)
n between the variational eigenvalue and the corresponding partial sum. As a

visual aid, the digits in the partial sums not identical with those of the variational energies have
been offset by a space.

n g N0 N1 *
(N0,N1)
n −log

∣∣∣σ (N0,N1)
n

∣∣∣ −log |error|

0 0.02 33 16 0.5140864273180 467 13.7 13.5
0.03 22 10 0.52056171 7862 9.0 8.7
0.04 16 7 0.526733 5941 6.6 6.4
0.05 13 6 0.53264 775 5.3 5.3

1 0.02 30 14 1.568239676 127 9.4 9.2
0.03 19 8 1.5984 645 5.3 5.1
0.04 12 4 1.626 285 3.5 3.3
0.05 9 3 1.65 504 2.6 2.8

That is, we get as estimates for N0 and N1 (denoted by N̄0 and N̄1)

N0 ≈ N̄0 = 2

(
1

3g
− n − 1

2
[

ln
(

1
3g + 1

2

)
+ ln 12 − ψ(n + 1)

]
)
. (68)

N1 ≈ N̄1 = N̄0

2
− 1

2
[
ln
(

1
2 N̄0 + n + 1

2

)
+ ln 12 − ψ(n + 1)

] . (69)

The estimated magnitude for the smallest hyperterm is accordingly∣∣σ (N̄0,N̄1)
n,as

∣∣ ≈ ∣∣Cn

√
2π(3g)−n e− 1

3g
∣∣2 [ln

(
1

3g
+

1

2

)
+ ln 12 − ψ(n + 1)

]
. (70)

The predictions of equations (66)–(70) are compared with the results of numerical calculations
in tables 5 and 6. The smallest ‘late’ hyperterms for each g are displayed in table 6, along
with the corresponding partial sums and errors.

The n = 0 predictions agree closely with the calculated hyperterms. For n = 1, the
coefficient b(2)1 is so small that the N1 = 2 term can be the smallest, and the recipe to
truncate just before the smallest hyperterm would prematurely end the series. So we look for
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the smallest hyperterm with N1 � 3. It is apparent in tables 5 and 6 that for the n = 1 case
the indices of the smallest hyperterm as well as its magnitude are smaller than predicted. The
explanation is not profound: in the n = 1 case the leading asymptotic estimate for b(k)1 is not
sufficiently accurate for small k. For instance, the ratios between the exact and asymptotic
values of b(k)n are 0.38 (n = 0) and 0.05 (n = 1) for the small k = 4, and 0.95 (n = 0) and
0.82 (n = 1) for the larger k = 50.

4.3. Smallest second-level hyperterm and partial sum

To obtain the asymptotics of the second-level hyperterms we first focus our discussion on
the double integral T {2}(p, q, 3g) given in equation (57). (Similar arguments apply to
U {2} in equation (58), which has an additional logarithmic factor.) Proper treatment of the
singularity in the ζ integrand would require discussion of the discontinuity of the energy in third
exponentially small order, but the end result for calculation of the second-level asymptotics
would be to take the principal value, which accordingly we denote by

I (z) = PV

∫ ∞

0
(3ζ )−q e−1/3ζ

ζ − z
dζ. (71)

At z = 0 and z = ∞ we compute easily

I (0) = �(q) (72)

I (z) ∼ − 1

3z
�(q − 1) (z → ∞). (73)

The integral I (z) starts positive, ends up negative, and has a single zero approximately at
z = 1/(3q) where the zero of the denominator ζ − z coincides with the maximum of the
numerator.

The outer z integral in T {2} is dominated by the product (3z)−p exp[−1/(3z)] that has a
maximum at z = 1/(3p). If p � q (N0 −N1 � N1 − l ), then the z integral samples mainly
the early parts of I (z), and via equation (72) we obtain

T {2}(p, q, 3g) ∼ T

(
p,

1

3g

)
�(q) ∼ 1

2
�(p)�(q) (p � q). (74)

(Equation (A.5) is more appropriate for T (p, 1/(3g)) in the end than equation (A.3).)
On the other hand, if p � q (N0 − N1 � N1 − l), then the integral samples mainly the

late part of I (z), and via equation (73) we obtain

T {2}(p, q, 3g) ∼ − 1
2�(p + 1)�(q − 1) (p � q). (75)

The estimates (74) and (75) are opposite in sign. When p ∼ q (N0 − N1 ∼ N1 − l), and
especially when both are near 1/(3g), neither estimate is valid, and T {2} crosses from positive
to negative values.

The corresponding estimates for the leading asymptotics of the T {2} contribution to the
second-level hyperterms are

(−3g)N0C2
nd

(l)
n T {2}(p, q, 3g) ∼ 3

2C
2
n(−3g)N0�(p)�(q)�

(
n + l + 1

2

)
× [

ln
(
l + n + 1

2

)
+ ln 12 − ψ(n + 1)

]2
(N0 − N1 � N1 − l) (76)

and

(−3g)N0C2
nd

(l)
n T {2}(p, q, 3g) ∼ − 3

2C
2
n(−3g)N0�(p + 1)�(q − 1)�

(
n + l + 1

2

)
× [

ln
(
l + n + 1

2

)
+ ln 12 − ψ(n + 1)

]2
(N0 − N1 � N1 − l). (77)
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To find the values of N0, N1 and N2 = l for which the second-level hyperterm estimates have
minimum magnitude, we borrow from the discussion relating to the hyperterms. We ignore
the logarithmic factors, which have only a small effect on the location of the minimum, and
find that the best value of N2, with N0 and N1 fixed, is

N2 = l ≈ 1
2N1 N0 − N1 � N1 − N2 ∼ 1

2N1 (78)

or

N2 = l ≈ 1
2 (N1 − 1) N0 − N1 � N1 − N2 ∼ 1

2N1 + 1
2 . (79)

In the first case, the best value of N1 then minimizes

�
(
N0 − N1 + n + 1

2

) [
�
(

1
2N1 + n + 1

2

)]2
(80)

and has the solution

N1 ≈ 2
3N0. (81)

In the second case, the best value of N1 minimizes

�
(
N0 − N1 + 1 + n + 1

2

) [
�
(

1
2N1 − 1

2 + n + 1
2

)]2
(82)

and has the solution

N1 ≈ 2
3N0 + 1. (83)

In both cases the minimum value of the gamma-function product is[
�
(

1
3N0 + n + 1

2

)]3
. (84)

It must be pointed out that these values of N1 make equalities out of the inequalities that define
the two limiting cases. We conclude that the estimate for N1 will be more reasonable than the
asymptotic estimate of the second-level hyperterm.

The optimum value of N0 minimizes

(3g)N0
[
�
(

1
3N0 + n + 1

2

)]3
. (85)

As discussed in the RS and hyperterm cases, when Stirling’s approximation is valid

N0 ∼ 1

g
− 3n. (86)

When considering the U {2} contributions, we get estimates similar to equations (76)–(86),
except that there is an extra factor of 2 on the right-hand sides of the equations equivalent to
(76) and (77). But in fact inserting a factor of 2 does not take proper account of the second and
third terms in equations (A.18) or additionally of the similar third set of terms in equation (56).
The contributions of these slighted terms are decidedly nonuniform, being of little importance
away from the region of the smallest term, but growing more significant near the smallest
term. We opt for simplicity by ignoring them in estimating the smallest term, but the resulting
estimate must consequently be regarded as crude.

In summary, the smallest second-level hyperterms will occur generally when

N0 ∼ N̄0 = 1

g
− 3n = 3N̄2 (87)

N1 ∼ N̄1 = 2

3g
− 2n = 2N̄2 (88)

N2 ∼ N̄2 = 1

3g
− n. (89)
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A crude order-of-magnitude estimate of the absolute value of the smallest second-level
hyperterm (equivalent to three times the T {2} contribution) is given by∣∣σ (N̄0,N̄1,N̄ 2)

n,as

∣∣ ≈ 9

2

∣∣Cn

√
2π(3g)−n e− 1

3g
∣∣3 [ln

(
1

3g
+

1

2

)
+ ln 12 − ψ(n + 1)

]2

. (90)

However, the smallest term will also occur near where the asymptotic sign changes, so that
the actual value is less predictable than the position.

The predictions of equations (87)–(90) are compared with the results of numerical
calculations in tables 7 and 8. The predicted and actual N0, N1, N2 values for the smallest
term in table 7 are close. The largest discrepancies are in N2 for the highest g values when
n = 1. The asymptotic estimate for the smallest term, however, is an order of magnitude too
large for n = 0, and two or more orders of magnitude too large for n = 1. There are two main
reasons for these discrepancies: the values of b(k)n , c(k)n and d(k)

n for small-k are overestimated
by the leading asymptotic term, especially for n = 1, and the smallest term is not well fit by
either of the asymptotic estimates (74) or (75), since it falls in the transition between the two.
At least one of the two adjacent terms (N2 ± 1), also displayed in table 7, better matches the
(crude) estimate.

The energies obtained by truncation of the second-level hyperasymptotic series just before
the smallest terms are displayed in table 8. The accuracy estimated as the value of the smallest
term is significantly more optimistic than the true accuracy in part because the smallest term
is not representative of the close-by terms in the series. These are better estimators, as shown
in table 7.

Note that the (n = 1, g = 0.05) second-level hyperasymptotic energy in table 8 is worse
than the first-level energy in table 6. It would appear that g = 0.05 is greater than the largest
value at which higher-level hyperasymptotics is useful for the n = 1 level.

The tables 4, 6 and 8 display a slightly less than threefold increase in the number
of significant figures in the second-level hypersums over the RS partial sums in the most
favourable cases.

4.4. Graphical picture of hyperasymptotic summation

To illustrate hyperasymptotic summation for the anharmonic oscillator, we plot
semilogarithmically in figures 2 and 3 the magnitudes of the RS terms, the hyperterms, and
second-level hyperterms for g = 0.02 for the ground and first-excited states. The parameters
N0 and N1 are taken from the ‘smallest second-level hyperterm’ cases given in tables 7 and 8:
n = 0, N0 = 50, N1 = 34, N2 = 16, and n = 1, N0 = 47, N1 = 33, N2 = 17. Note
how in each stage the magnitude terms first decrease in magnitude (except for some early
irregularities until the asymptotic behaviour of the b(k)n , c(k)n and d(k)

n settles), reach a minimum,
and then increase factorially with the order. The sharpness of the minimum in the plots of the
log

∣∣σ (N0,N1,l)
n

∣∣ versus l and which defines N2 is apparent, compared with the rounded minima
for the corresponding RS and hyperterm plots. The explanation is that in the RS, hyperterm,
and away-from-the-minimumsecond-level hyperterm cases, the asymptotic value of each term
is dominated by a product of competing gamma functions or powers (equations (62), (65), (76)
and (77)) that vary smoothly with theNi . In figures 2 and 3, however, the asymptotic estimates
are not valid for the second-level term near its minimum, where it is undergoing a change in
sign—i.e. passing through zero. The magnitudes of the second-level hyperterms that bracket
zero are expected to be much smaller than away from the sign change. The smallest regular
term for n = 0 is of the order of magnitude 10−20, while the largest term in the partial sum
(j = 49) is near 102. The smallest regular term for n = 1 is of the order of magnitude 10−13,
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Table 7. Smallest second-level hyperterms and corresponding values of N0, N1 and N2: asymptotic estimates and actual. The two adjacent terms (N2 ± 1) are also shown (see table 2
for notation).

Asymptotic estimate Actual

n g N̄0 N̄1 N̄2

∣∣∣σ (N̄0,N̄1,N̄2)
n,as

∣∣∣ N0 N1 N2 σ
(N0,N1 ,N2)
n σ

(N0,N1 ,N2−1)
n σ

(N0,N1 ,N2+1)
n

0 0.02 50.0 33.3 16.7 4.06 × 10−20 50 34 16 4.07 × 10−21 2.10 × 10−20 −1.13 × 10−20

0.03 33.3 22.2 11.1 6.12 × 10−13 34 23 10 7.76 × 10−14 3.25 × 10−13 −1.13 × 10−13

0.04 25.0 16.7 8.3 2.30 × 10−9 25 17 7 −2.64 × 10−10 −1.00 × 10−9 2.87 × 10−10

0.05 20.0 13.3 6.7 3.15 × 10−7 19 13 6 2.75 × 10−8 −2.97 × 10−8 1.09 × 10−7

1 0.02 47.0 31.3 15.7 2.24 × 10−13 47 33 17 2.64 × 10−16 −4.03 × 10−14 5.91 × 10−14

0.03 30.3 20.2 10.1 9.73 × 10−7 28 19 8 7.29 × 10−10 5.46 × 10−8 −6.38 × 10−8

0.04 22.0 14.7 7.33 1.51 × 10−3 21 14 5 7.46 × 10−8 −3.03 × 10−5 3.75 × 10−5

0.05 17.0 11.3 5.7 1.03 × 10−1 18 12 4 1.90 × 10−5 3.94 × 10−3 −1.60 × 10−3
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Figure 2. Semilogarithmic plot to show for the ground state the magnitudes of the RS, first-
level and second-level hyperterm contributions specified by equations (29), (37) and (56). The
parameter values correspond to the smallest second-level hyperterm case given in tables 7 and 8
and are g = 0.02, n = 0, N0 = 50 and N1 = 34. The first 50 points are the RS log |σ (j)

0 | versus j ,

for j = 0, 1, . . . , 49. The RS values continue through j = 53. The hyperterm log |σ (N0,k)
0 | values

start at j = 50, that is, k = j −N0 = j −50, and continue through k = 52, which is j = 102. The
second-level hyperterm log |σ (N0,N1 ,l)

0 | values start at j = 84, that is, l = j−N0−N1 = j−50−34,
and continue through l = 34 (j = 118). Notice the sharp dip of the smallest second-level hyperterm
at N2 = 16 (j = 100).

Table 8. Second-level hyperenergies and accuracy (as number of significant digits) for the ground
and first excited states (see table 2 for notation). The ‘error’ in the last column denotes the
difference En(g) − *

(N0,N1 ,N2)
n between the variational eigenvalue and the corresponding partial

sum. As a visual aid, the digits in the partial sums not identical with those of the variational
energies have been offset by a space.

n g N0 N1 N2 *
(N0,N1,N2)
n −log

∣∣∣σ (N0,N1 ,N2)
n

∣∣∣ −log |error|

0 0.02 50 34 16 0.51408642731801576472 340 20.4 20.9
0.03 34 23 10 0.5205617198730 189 13.1 13.8
0.04 25 17 7 0.526733964 644 9.58 9.60
0.05 19 13 6 0.5326427 739 7.56 7.72

1 0.02 47 33 17 1.5682396768049 739 15.6 13.6
0.03 28 19 8 1.5984560 033 9.1 7.1
0.04 21 14 5 1.626 815 7.1 4.2
0.05 18 12 4 1.65 039 4.7 2.5

while the largest term in the partial sum (j = 46) is near 103. The cancellation of significant
figures is characteristic.

5. Discussion

This paper has shown how to use the hyperasymptotic method to sum the divergent RS
expansion for the perturbed harmonic oscillator to second-exponentially-small order in
exp[−1/(3g)].
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Figure 3. Semilogarithmic plot to show for the first excited state the magnitudes of the RS,
first-level and second-level hyperterm contributions specified by equations (29), (37) and (56).
The parameter values correspond to a smallest second-level hyperterm case given in tables 7
and 8 and are g = 0.02, n = 1, N0 = 47 and N1 = 33. The first 47 points are the RS
log |σ (j)

1 | versus j , for j = 0, 1, . . . , 46. The RS values continue through j = 53. The hyperterm

log |σ (N0,k)
1 | values start at j = 47, that is, k = j − N0 = j − 47, and continue through k = 52,

which is j = 99. The second-level hyperterm log |σ (N0,N1 ,l)
1 | values start at j = 80, that is,

l = j −N0 −N1 = j − 47 − 33, and continue through l = 33 (j = 113). Notice the sharp dip of
the smallest second-level hyperterm at N2 = 17 (j = 97).

The connection between dispersion relation and hyperasymptotics is first explored via the
Airy function in section 2, where the paradigm is set. Application to the perturbed oscillator
is developed using the asymptotic expansion for the discontinuity in the energy calculated in
the companion paper [38]. The step from first- to second-level hyperasymptotics requires a
cancellation of the second-exponentially-small formally real series with the real part of the
Borel sum of the first-exponentially-small formally imaginary series,which we have not proved
rigorously. The first-level hyperasymptotics involve coefficients b(k)n of the first-exponentially-
small subseries that has been previously studied. The second-level hyperasymptotics involve
coefficients c(k)n and d(k)

n from the second-exponentially-small subseries. The early b(k)n sum
the late terms of the RS series. The early c(k)n and d(k)

n sum the late terms of the b(k)n series and
also the direct contribution of the imaginary second-exponentially-small subseries.

To estimate the RS, hyperterm and second-level hyperterm contributions, it is necessary
to have asymptotic estimates for large k for E(k)

n , b(k)n , c(k)n and d(k)
n , which have been obtained

in [37, 38]. Although we have omitted the formal proof, these formulae also show that in the
g → 0 limit the hyperasymptotic contribution approximates the first omitted RS term, while
the first-level hyperasymptotic contribution approximates the first omitted hyperterm.

The estimates for the error when optimally truncated for the RS, hyperterm and second-
level hyperterm series are of the order of∣∣Cn

√
2π(3g)−n e− 1

3g
∣∣p+1 |ln(3g)|p (91)

where p = 0, 1, 2 denotes the highest level to which hyperasymptotics is taken. It is clear
from equations (60) and (91) that for large values of g hyperasymptotics does not appear to
be advantageous, but that for small values of g the accuracy can be considerable.

Balancing the formal aspects of hyperasymptotics are numerics. Formulae for evaluating
the hyperterm and second-level hyperterm integrals have been derived in the appendix.
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These have then been used to illustrate and support the various asymptotic estimates of
optimum truncation, and to show the accuracy obtained by calculations on the ground
and first excited states with g = 0.02, 0.03, 0.04, 0.05. All the calculations were carried
out using Mathematica. There are three general observations: (i) in the most favourable
cases treated here, accuracy is a little less than tripled in going from RS to second-level
hyperasymptotics (the logarithmic factors in equations (70) and (90) reduce the gain); (ii)
each successive level of hyperasymptotics requires an exponential increase in computing
resources; (iii) the higher the final hyperasymptotic level, the greater the numerical cancellation
in getting there. The great logarithmic gulf between largest and smallest terms (the
latter characterizing the final accuracy) is manifest in figures 2 and 3. For accuracy, the
advantage of Mathematica is to be able to specify the precision of the calculation as high as
necessary.

As we mentioned briefly in the introduction, the overall behaviour of hyperasymptotic
summation should be ultimately determined by the position of the ‘adjacent’ [2] Bender–
Wu singularities in the Riemann surface of the energy [22–24] but, in the light of
equations (60) and (61), hyperasymptotic summation in its present form will be useful if
1/(3g) > n. Therefore, although all the relevant quantities have been calculated explicitly as
functions of n and consequently all the states involve approximately the same computational
effort, the higher the state n, the smaller the domain of validity of the procedure. (Note,
however, that a fixed value of g corresponds to a much larger perturbation of a level with large
n than of a level with small n, as is obvious from the larger extent of the eigenfunction for
larger n.)

Our results are certainly not limited to the quartic anharmonic oscillator. We stress
again that the key requirement is the existence of a dispersion relation. Therefore, the
hyperasymptotic iteration can be applied straightforwardly to any perturbation of even degree
gx2k, and to odd perturbations gx2k+1 with the proviso that the complex energy then satisfies
a dispersion relation in g2, not in g. (In particular, the eigenvalues of the harmonic oscillator
with cubic perturbation are real for purely imaginary values of the coupling constant g.) The
method to derive the required asymptotic expansions for these perturbed oscillators has been
discussed in [41, 42].

It is of course true that other numerical techniques can generate accurate eigenvalue
approximations. Hyperasymptotics is however more than a procedure for obtaining
exponential numerical improvements from perturbative methods [1, 2, 16–18]. Since it is
based on a nonlocal incorporation of singularities, it can extend the range of validity of
parameter values that can be treated, and can be used to calculate functions on and over
Stokes lines into other sectors. It can also be used to discriminate between closely lying
numerical solutions: exponentially small differences between two nearby solutions may grow
to dominate the solutions at a later time, or for other parameter ranges. The presence and
contribution of these exponentially small terms can only be discovered by calculation of the
Stokes constant premultipliers. At present hyperasymptotics is the only systematic way to
calculate these premultipliers to arbitrary precision [15, 18]. Finally, hyperasymptotics allows
for a numerical interpretation of more advanced resurgence methods that have been applied to
problems in theoretical physics [40]. The calculation of individual anharmonic eigenvalues in
this paper is a further extension of this idea.
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Appendix A. Evaluation of integrals

In this appendix we discuss the evaluation of the nonlogarithmic hyperterminants (cf [26, 27])
and the new logarithmic hyperterminants.

Appendix A1. First-level hyperasymptotics: T
(
N0 + n + 1

2 − k, 1
3g

)
To compute the first-level hyperasymptotic contribution to the anharmonic oscillator energy
we need to evaluate the integral (38). One formula is given in equation (18), which we repeat
here with the indices relevant for the anharmonic oscillator,

T

(
N0 + n +

1

2
− k,

1

3g

)
= (3g)−N0−n− 1

2 +k e
1

3g �

(
N0 + n +

1

2
− k

)

×�

(
1 − N0 − n − 1

2
+ k,

1

3g

)
. (A.1)

By using the gamma-function reflection formula and specializing to integer N0 + n − k,
equation (A.1) can be put in a form convenient for numerical computation,

T

(
N0 + n +

1

2
− k,

1

3g

)
= π(−1)N0+n−k e

1
3g

(3g)N0+n+ 1
2 −k

�
(

1 − N0 − n − 1
2 + k, 1

3g

)
�
(
1 − N0 − n − 1

2 + k
) . (A.2)

The ratio of the incomplete to complete gamma function—called the ‘regularized incomplete
gamma function’—is a standard function available in Mathematica.

Appendix A2. First-level hyperasymptotics as g → 0

For N0 − k fixed, we see directly from equation (38) that

T

(
N0 + n +

1

2
− k,

1

3g

)
→ �

(
N0 + n +

1

2
− k

)
(g → 0). (A.3)

The smallest hyperterms, however, correspond to N0 − k ≈ 1/(3g) − n, which for small g is
large, and the estimate given above in equation (A.3) is not valid. Consider therefore equation
(A.1) with N0 + n − k replaced by 1/(3g):

T
(

1
3g + 1

2 ,
1

3g

)
�
(

1
3g + 1

2

) = (3g)−
1

3g − 1
2 e

1
3g �

(
1 − 1

3g
− 1

2
,

1

3g

)
−→
g→0

1

2
. (A.4)

The result is similar to equation (A.3), except that there is an extra factor of 1/2:

T

(
N0 + n +

1

2
− k,

1

3g

)
∼ 1

2
�

(
N0 + n +

1

2
− k

)
(
g → 0 with N0 + n − k ∼ 1

3g

)
. (A.5)

Appendix A3. Second-level hyperasymptotics

The integrals T {2} and U {2} do not have finite expressions in terms of simple functions
[26, 27]. Furthermore, when z is on the real axis in equations (57) and (58), there is a
singularity in the integrand of the inner integral.



4040 G Álvarez et al

Towards evaluating T {2} and U {2} via equations (57) and (58), consider first the inner
integrations, with z real and ε > 0:∫ ∞

0
(3ζ )−q e− 1

3ζ

ζ − (z ∓ iε)
dζ = T

(
q,

1

3(±iε − z)

)
(A.6)

∫ ∞

0
(3ζ )−q e− 1

3ζ

ζ − (z ∓ iε)
ln(3ζ ) dζ = − d

dq
T

(
q,

1

3(±iε − z)

)
. (A.7)

It is convenient to expand equation (A.6) in an infinite series, which can be integrated term-
by-term when put into equation (57), via the following sequence of steps:

T (q, a) = a

∫ ∞

0
xq−1 e−x

x + a
dx (A.8)

= �(q) eaaq
∫ ∞

a

e−t t−q dt (A.9)

= �(q) eaaq
[
�(1 − q) −

∞∑
m=0

(−1)mam−q+1

m!(m − q + 1)

]
(A.10)

= π

sinπq
eaaq + �(q) ea

∞∑
m=0

(−a)m+1

m!(m− q + 1)
. (A.11)

One finds for equation (A.6) that

T

(
q,

1

3(±iε − z)

)
= π

sinπq
[3(±iε − z)]−q e1/[3(±iε−z)]

+�(q) e1/[3(±iε−z)]
∞∑

m=0

[3(z ∓ iε)]−m−1

m!(m− q + 1)
. (A.12)

In the limit ε → 0 and z positive, one gets the sum of a purely imaginary exponentially small
term and a convergent, real series (note that q is an integer plus 1/2):

T

(
q,

1

3(±iε − z)

)
→ ∓iπ(3z)−q e−1/(3z) + �(q) e−1/(3z)

∞∑
m=0

(3z)−m−1

m!(m − q + 1)(
q = integer +

1

2

)
. (A.13)

The logarithmic integral (A.7) is a derivative with respect to q. We evaluate it via equation
(A.12):

− d

dq
T

(
q,

1

3(±iε − z)

)
= π

sinπq
[3(±iε − z)]−q e1/[3(±iε−z)][π cotπq + ln[3(±iε − z)]]

−�(q) e1/[3(±iε−z)]
∞∑

m=0

[3(z ∓ iε)]−m−1

m!(m− q + 1)

[
ψ(q) +

1

m − q + 1

]
. (A.14)

Again, in the limit ε → 0 and z positive, one gets the sum of a purely imaginary exponentially
small term and a convergent, real series. But in addition, there is an exponentially small real
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term coming from ln[3(±iε − z)] → ln(3z) ± iπ

− d

dq
T

(
q,

1

3(±iε − z)

)
→ ∓iπ(3z)−q e−1/(3z) ln(3z) + π2(3z)−q e−1/(3z)

−�(q)ψ(q) e−1/(3z)
∞∑

m=0

(3z)−m−1

m!(m − q + 1)
− �(q) e−1/(3z)

∞∑
m=0

(3z)−m−1

m!(m − q + 1)2
.

(A.15)

With equations (A.13) and (A.15) for the inner integrations, we are in a position to evaluateT {2}

andU {2}. For T {2} the result is a sum over the functions T that arose at the first hyperasymptotic
level:

T {2}(p, q, 3g) = ∓i
π

2p+q
T

(
p + q,

2

3g

)
+
�(q)

2p+1

∞∑
m=0

T
(
p + m + 1, 2

3g

)
m!(m − q + 1)2m

. (A.16)

Note that for large m it follows from equation (A.8) that

T

(
p + m + 1,

2

3g

)
∼ 2

3g
�(p + m). (A.17)

The ratio of successive terms in the series (A.16) approaches 1/2, and the series is convergent.
The imaginary term we presume to be cancelled by the next hyperasymptotic order. We drop it
from the numerical calculations; this is identical to taking the principal value of the integrals.

For U {2} the calculation is similar, except that we omit the imaginary term from the
beginning. The result is the sum of a multiple of the corresponding T {2} and two additional
sets of terms:

U {2}(p, q, 3g)real = 2T {2}(p, q, 3g)real [ψ(q) + ln 12 − ψ(n + 1)]

+
�(q)

2p

∞∑
m=0

T
(
p + m + 1, 2

3g

)
m!(m− q + 1)22m

− 2
π2

2p+q
T

(
p + q,

2

3g

)
. (A.18)

We call the reader’s attention to the c(l)n terms in equation (56). The last term in equation
(A.18) contributes exactly −2 times the contribution that comes from �E

{2,r}
n . We finally

remark that the term T (p + q, 2/(3g)) has to be evaluated with equations (18) or (A.1), and
not with equation (A.2), which assumes that the first argument is an integer plus 1/2.
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[24] Álvarez G and Silverstone H J 1994 Phys. Rev. A 50 4679
[25] Boyd W G C 1990 Proc. R. Soc. A 429 227
[26] Olde Daalhuis A B 1996 J. Comput. Appl. Math. 76 255
[27] Olde Daalhuis A B 1998 J. Comput. Appl. Math. 89 87
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